Rickley Park
 Cracking the Code of Learning Together

Mathematics Calculation Policy

Date of Policy: January 2024
Date of Review: January 2025

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the larger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 . Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.		$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Column methodno regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{gathered} 21+42= \\ 21 \\ +\underline{42} \end{gathered}$

| Objective and
 Strategies |
| :---: | :---: | :---: | :---: |
| Taking away ones | | Use physical objects, counters, cubes etc to |
| :--- |
| show how objects can be taken away. | Cross out drawn objects to show what has been taken away.

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part -Part -Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.
Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway five more so you have taken away 9. You are left with the answer of 5 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?

	Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens. Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.		This will lead to an understanding of subtracting any number including decimals.

Objective and
Strategies

Doubling
Counting in
multiples

Repeated addition	B8BR	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. $\begin{aligned} & 9000 \quad 4 \times 2=8 \\ & 0000 \\ & 2 \times 4=8 \\ & 002 \times 4=8 \\ & 00 \\ & 00 \\ & 4 \times 2=8 \end{aligned}$ Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Objective and
Strategies

Sharing objects
into groups
Division within arrays

Long Division	Concrete and pictorial approaches can be used as above for division. Long division is then taught as an abstract method buildilng on those stratigies.	Concrete and pictorial approaches can be used as above for division. Long division is then taught as an abstract method buildilng on those stratigies. Long division requires solid knowledge of all four operations.	
Interpreting a remainder when performing long division	Interpreting a remainder when performing Long Division: Calculation: $7861 \div 14=561 r 7$ Share the remainder by the divisor. E.g $7 \div 14=$ Represent as a fraction: $\frac{7}{14}$ Simplify $\frac{7}{14}=\frac{1}{2}=0.5 \xrightarrow{0.5} \quad$ Rnis might be a Or calaulate 1417.5		

